图书介绍
Sloshing【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- Odd M. Faltinsen ; Alexander N. Timokha 著
- 出版社: Cambridge University Press
- ISBN:0521881110
- 出版时间:2009
- 标注页数:578页
- 文件大小:85MB
- 文件页数:609页
- 主题词:
PDF下载
下载说明
SloshingPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 SLOSHING IN MARINE- AND LAND-BASED APPLICATIONS1
1.1 Introduction1
1.2 Resonant free-surface motions1
1.3 Ship tanks5
1.3.1 Oil tankers10
1.3.2 FPSO ships and shuttle tankers12
1.3.3 Bulk carriers12
1.3.4 Liquefied gas carriers14
1.3.5 LPG carriers15
1.3.6 LNG carriers16
1.3.7 Chemical tankers21
1.3.8 Fish transportation21
1.3.9 Cruise vessels21
1.3.10 Antirolling tanks22
1.4 Tuned liquid dampers22
1.5 Offshore platforms24
1.6 Completely filled fabric structure27
1.7 External sloshing for ships and marine structures27
1.8 Sloshing in coastal engineering30
1.9 Land transportation31
1.10 Onshore tanks31
1.11 Space applications32
1.12 Summary of chapters33
2 GOVERNING EQUATIONS OF LIQUID SLOSHING35
2.1 Introduction35
2.2 Navier-Stokes equations35
2.2.1 Two-dimensional Navier-Stokes formulation for incompressible liquid35
2.2.1.1 Continuity equation36
2.2.1.2 Viscous stresses and derivation of the Navier-Stokes equations36
2.2.2 Three-dimensional Navier-Stokes equations37
2.2.2.1 Vorticity and potential flow38
2.2.2.2 Compressibility39
2.2.3 Turbulent flow40
2.2.4 Global conservation laws40
2.2.4.1 Conservation of fluid momentum40
2.2.4.2 Conservation of kinetic and potential fluid energy41
2.2.4.3 Examples:two special cases42
2.3 Tank-fixed coordinate system43
2.4 Governing equations in a noninertial,tank-fixed coordinate system45
2.4.1 Navier-Stokes equations45
2.4.1.1 Illustrative example:application to the Earth as an accelerated coordinate system46
2.4.2 Potential flow formulation47
2.4.2.1 Governing equations47
2.4.2.2 Body boundary conditions48
2.4.2.3 Free-surface conditions48
2.4.2.4 Mass (volume) conservation condition49
2.4.2.5 Free boundary problem of sloshing and initial/periodicity conditions49
2.5 Lagrange variational formalism for the sloshing problem51
2.5.1 Eulerian calculus of variations51
2.5.2 Illustrative examples53
2.5.2.1 Spring-mass systems53
2.5.2.2 Euler-Bernoulli beam equation54
2.5.2.3 Linear sloshing in an upright nonmoving tank56
2.5.3 Lagrange and Bateman-Luke variational formulations for nonlinear sloshing57
2.5.3.1 The Lagrange variational formulation57
2.5.3.2 The Bateman-Luke principle58
2.6 Summary59
2.7 Exercises59
2.7.1 Flow parameters59
2.7.2 Surface tension60
2.7.3 Kinematic boundary condition60
2.7.4 Added mass force for a nonlifting body in infinite fluid60
2.7.5 Euler-Lagrange equations for finite-dimensional mechanical systems61
3 WAVE-INDUCED SHIP MOTIONS63
3.1 Introduction63
3.2 Long-crested propagating waves63
3.3 Statistical description of waves in a sea state67
3.4 Long-term predictions of sea states70
3.5 Linear wave-induced motions in regular waves73
3.5.1 Definitions73
3.5.2 Equations of motion in the frequency domain76
3.6 Coupled sloshing and ship motions80
3.6.1 Quasi-steady free-surface effects of a tank80
3.6.2 Antirolling tanks82
3.6.3 Free-surface antirolling tanks83
3.6.4 U-tube roll stabilizer85
3.6.4.1 Nonlinear liquid motion88
3.6.4.2 Linear forces and moments due to liquid motion in the U-tube90
3.6.4.3 Lloyd’s U-tube model90
3.6.4.4 Controlled U-tank stabilizer94
3.6.5 Coupled sway motions and sloshing97
3.6.6 Coupled three-dimensional ship motions and sloshing in beam waves99
3.7 Sloshing in external flow103
3.7.1 Piston-mode resonance in a two-dimensional moonpool103
3.7.2 Piston and sloshing modes in three-dimensional moonpools108
3.7.3 Resonant wave motion between two hulls110
3.8 Time-domain response111
3.9 Response in irregular waves114
3.9.1 Linear short-term sea state response114
3.9.2 Linear long-term predictions115
3.10 Summary115
3.11 Exercises117
3.11.1 Wave energy117
3.11.2 Surface tension117
3.11.3 Added mass and damping118
3.11.4 Heave damping at small frequencies in finite water depth118
3.11.5 Coupled roll and sloshing in an antirolling tank of a barge in beam sea119
3.11.6 Operational analysis of patrol boat with U-tube tank120
3.11.7 Moonpool and gap resonances121
4 LINEAR NATURAL SLOSHING MODES122
4.1 Introduction122
4.2 Natural frequencies and modes123
4.3 Exact natural frequencies and modes125
4.3.1 Two-dimensional case125
4.3.1.1 Rectangular planar tank125
4.3.1.2 Wedge cross-section with 45° and 60° semi-apex angles128
4.3.1.3 Troesch’s analytical solutions130
4.3.2 Three-dimensional cases130
4.3.2.1 Rectangular tank130
4.3.2.2 Upright circular cylindrical tank133
4.4 Seiching135
4.4.1 Parabolic basin136
4.4.2 Triangular basin136
4.4.3 Harbors137
4.4.4 Pumping-mode resonance of a harbor137
4.4.5 Ocean basins138
4.5 Domain decomposition138
4.5.1 Two-dimensional sloshing with a shallow-water part138
4.5.2 Example:swimming pools140
4.6 Variational statement and comparison theorems140
4.6.1 Variational formulations142
4.6.1.1 Rayleigh’s method142
4.6.1.2 Rayleigh quotient for natural sloshing144
4.6.1.3 Variational equation147
4.6.2 Natural frequencies versus tank shape:comparison theorems150
4.6.3 Asymptotic formulas for the natural frequencies and the variational statement151
4.6.3.1 Small liquid-domain reductions of rectangular tanks151
4.6.3.2 Asymptotic formula for a chamfered tank bottom:examples152
4.6.3.3 Discussion on the analytical continuation and the applicability of formula (4.90)155
4.7 Asymptotic natural frequencies for tanks with small internal structures157
4.7.1 Main theoretical background158
4.7.2 Baffles161
4.7.2.1 Small-size (horizontal or vertical) thin baffle161
4.7.2.2 Hydrodynamic interaction between baffles (plates)and free-surface effects164
4.7.3 Poles168
4.7.3.1 Horizontal and vertical poles168
4.7.3.2 Proximity of circular poles170
4.8 Approximate solutions171
4.8.1 Two-dimensional circular tanks171
4.8.2 Axisymmetric tanks172
4.8.2.1 Spherical tank173
4.8.2.2 Ellipsoidal (oblate spheroidal) container175
4.8.3 Horizontal cylindrical container176
4.8.3.1 Shallow-liquid approximation for arbitrary cross-section176
4.8.3.2 Shallow-liquid approximation for circular cross-section177
4.9 Two-layer liquid179
4.9.1 General statement179
4.9.2 Two-phase shallow-liquid approximation182
4.9.2.1 Example:oil-gas separator183
4.10 Summary185
4.11 Exercises186
4.11.1 Irregular frequencies186
4.11.2 Shallow-liquid approximation for trapezoidal-base tank186
4.11.3 Annular and sectored upright circular tank187
4.11.4 Circular swimming pool187
4.11.5 Effect of pipes on sloshing frequencies for a gravity-based platform189
4.11.6 Effect of horizontal isolated baffles in a rectangular tank191
4.11.7 Isolated vertical baffles in a rectangular tank192
5 LINEAR MODAL THEORY193
5.1 Introduction193
5.2 Illustrative example:surge excitations of a rectangular tank193
5.3 Theory196
5.3.1 Linear modal equations196
5.3.1.1 Six generalized coordinates for solid-body,linear dynamics196
5.3.1.2 Generalized coordinates for liquid sloshing and derivation of linear modal equations197
5.3.1.3 Linear modal equations for prescribed tank motions199
5.3.2 Resulting hydrodynamic force and moment in linear approximation200
5.3.2.1 Force200
5.3.2.2 Moment202
5.3.3 Steady-state and transient motions:initial and periodicity conditions204
5.4 Implementation of linear modal theory208
5.4.1 Time- and frequency-domain solutions208
5.4.1.1 Time-domain solution with prescribed tank motion208
5.4.1.2 Time-domain solution of coupled sloshing and body motion208
5.4.1.3 Frequency-domain solution of coupled sloshing and body motion208
5.4.2 Forced sloshing in a two-dimensional rectangular tank211
5.4.2.1 Hydrodynamic coefficients211
5.4.2.2 Completely filled two-dimensional rectangular tank213
5.4.2.3 Transient sloshing during collision of two ships219
5.4.2.4 Effect of elastic tank wall deflections on sloshing224
5.4.3 Forced sloshing in a three-dimensional rectangular-base tank226
5.4.3.1 Hydrodynamic coefficients226
5.4.3.2 Added mass coefficients in ship applications229
5.4.3.3 Tank added mass coefficients in a ship motion analysis233
5.4.4 Hydrodynamic coefficients for an upright circular cylindrical tank235
5.4.5 Coupling between sloshing and wave-induced vibrations of a monotower237
5.4.5.1 Theory237
5.4.5.2 Undamped eigenfrequencies of the coupled motions240
5.4.5.3 Variational method240
5.4.5.4 Wave excitation242
5.4.5.5 Damping244
5.4.6 Rollover of a tank vehicle245
5.4.7 Spherical tanks247
5.4.7.1 Hydroelastic vibrations of a spherical tank247
5.4.7.2 Simplified two-mode modal system for sloshing in a spherical tank249
5.4.8 Transient analysis of tanks with asymptotic estimates of natural frequencies250
5.5 Summary251
5.6 Exercises251
5.6.1 Moments by direct pressure integration and the Lukovsky formula251
5.6.2 Transient sloshing with damping251
5.6.3 Effect of small structural deflections of the tank bottom on sloshing252
5.6.4 Effect of elastic deformations of vertical circular tank252
5.6.5 Spilling of coffee253
5.6.6 Braking of a tank vehicle253
5.6.7 Free decay of a ship cross-section in roll253
6 VISCOUS WAVE LOADS AND DAMPING254
6.1 Introduction254
6.2 Boundary-layer flow254
6.2.1 Oscillatory nonseparated laminar flow255
6.2.2 Oscillatory nonseparated laminar flow past a circular cylinder257
6.2.3 Turbulent nonseparated boundary-layer flow258
6.2.3.1 Turbulent energy dissipation260
6.2.3.2 Oscillatory nonseparated flow past a circular cylinder261
6.3 Damping of sloshing in a rectangular tank262
6.3.1 Damping due to boundary-layer flow (Keulegan’s theory)262
6.3.2 Incorporation of boundary-layer damping in a potential ow model264
6.3.3 Bulk damping265
6.4 Morison’s equation266
6.4.1 Morison’s equation in a tank-fixed coordinate system267
6.4.2 Generalizations of Morison’s equation269
6.4.3 Mass and drag coefficients (CM and CD)270
6.5 Viscous damping due to baffles274
6.5.1 Baffle mounted vertically on the tank bottom275
6.5.2 Baffles mounted horizontally on a tank wall278
6.6 Forced resonant sloshing in a two-dimensional rectangular tank280
6.7 Tuned liquid damper (TLD)280
6.7.1 TLD with vertical poles282
6.7.2 TLD with vertical plate283
6.7.3 TLD with wire-mesh screen283
6.7.4 Scaling of model tests of a TLD286
6.7.5 Forced longitudinal oscillations of a TLD286
6.8 Effect of swash bulkheads and screens with high solidity ratio289
6.9 Vortex-induced vibration (VIV)294
6.10 Summary296
6.11 Exercises297
6.11.1 Damping ratios in a rectangular tank297
6.11.2 Morison’s equation297
6.11.3 Scaling of TLD with vertical poles298
6.11.4 Effect of unsteady laminar boundary-layer flow on potential flow298
6.11.5 Reduction of natural sloshing frequency due to wire-mesh screen298
7 MULTIMODAL METHOD299
7.1 Introduction299
7.2 Nonlinear modal equations for sloshing300
7.2.1 Modal representation of the free surface and velocity potential300
7.2.2 Modal system based on the Bateman-Luke formulation301
7.2.3 Advantages and limitations of the nonlinear modal method303
7.3 Modal technique for hydrodynamic forces and moments304
7.3.1 Hydrodynamic force305
7.3.1.1 General case305
7.3.1.2 Completely filled closed tank306
7.3.2 Moment306
7.3.2.1 Hydrodynamic moment as a function of the angular momentum306
7.3.2.2 Potential flow307
7.3.2.3 Completely filled closed tank307
7.4 Limitations of the modal theory and Lukovsky’s formulas due to damping307
7.5 Summary308
7.6 Exercises309
7.6.1 Modal equations for the beam problem309
7.6.2 Linear modal equations for sloshing309
8 NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR A TWO-DIMENSIONAL RECTANGULAR TANK310
8.1 Introduction310
8.2 Steady-state resonant solutions and their stability for a Duffing-like mechanical system315
8.2.1 Nonlinear spring-mass system,resonant solution,and its stability315
8.2.1.1 Steady-state solution315
8.2.1.2 Stability317
8.2.1.3 Damping319
8.2.2 Steady-state resonant sloshing due to horizontal excitations319
8.3 Single-dominant asymptotic nonlinear modal theory323
8.3.1 Asymptotic modal system323
8.3.1.1 Steady-state resonant waves:frequency-domain solution325
8.3.1.2 Time-domain solution and comparisons with experiments327
8.3.2 Nonimpulsive hydrodynamic loads337
8.3.2.1 Hydrodynamic pressure337
8.3.2.2 Hydrodynamic force338
8.3.2.3 Hydrodynamic moment relative to origin O339
8.3.2.4 Nonimpulsive hydrodynamic loads on internal structures339
8.3.3 Coupled ship motion and sloshing340
8.3.4 Applicability:effect of higher modes and secondary resonance341
8.4 Adaptive asymptotic modal system for finite liquid depth343
8.4.1 Infinite-dimensional modal system343
8.4.2 Hydrodynamic force and moment345
8.4.3 Particular finite-dimensional modal systems345
8.5 Critical depth347
8.6 Asymptotic modal theory of Boussinesq-type for lower-intermediate and shallow-liquid depths352
8.6.1 Intermodal ordering352
8.6.2 Boussinesq-type multimodal system for intermediate and shallow depths353
8.6.3 Damping355
8.7 Intermediate liquid depth355
8.8 Shallow liquid depth357
8.8.1 Use of the Boussinesq-type multimodal method for intermediate and shallow depths357
8.8.1.1 Transients357
8.8.1.2 Steady-state regimes358
8.8.2 Steady-state hydraulic jumps361
8.9 Wave loads on interior structures in shallow liquid depth371
8.10 Mathieu instability for vertical tank excitation373
8.11 Summary375
8.11.1 Nonlinear multimodal method375
8.11.2 Subharmonics377
8.11.3 Damping377
8.11.4 Hydraulic jumps377
8.11.5 Hydrodynamic loads on interior structures377
8.12 Exercises377
8.12.1 Moiseev’s asymptotic solution for a rectangular tank with infinite depth377
8.12.2 Mean steady-state hydrodynamic loads378
8.12.3 Simulation by multimodal method378
8.12.4 Force on a vertical circular cylinder for shallow depth378
8.12.5 Mathieu-type instability379
9 NONLINEAR ASYMPTOTIC THEORIES AND EXPERIMENTS FOR THREE-DIMENSIONAL SLOSHING380
9.1 Introduction380
9.1.1 Steady-state resonant wave regimes and hydrodynamic instability380
9.1.1.1 Theoretical treatment by the two lowest natural modes380
9.1.1.2 Experimental observations and measurements for a nearly square-base tank381
9.1.2 Bifurcation and stability385
9.2 Rectangular-base tank with a finite liquid depth387
9.2.1 Statement and generalization of adaptive modal system (8.95)387
9.2.2 Moiseev-based modal system for a nearly square-base tank388
9.2.3 Steady-state resonance solutions for a nearly square-base tank392
9.2.4 Classification of steady-state regimes for a square-base tank with longitudinal and diagonal excitations393
9.2.4.1 Longitudinal excitation394
9.2.4.2 Diagonal excitation400
9.2.5 Longitudinal excitation of a nearly square-base tank401
9.2.6 Amplification of higher modes and adaptive modal modeling for transients and swirling408
9.2.6.1 Adaptive modal modeling and its accuracy408
9.2.6.2 Transient amplitudes409
9.2.6.3 Response for diagonal excitations412
9.2.6.4 Response for longitudinal excitations414
9.3 Vertical circular cylinder417
9.3.1 Experiments419
9.3.2 Modal equations422
9.3.3 Steady-state solutions424
9.4 Spherical tank426
9.4.1 Wave regimes428
9.4.2 Tower forces430
9.5 Summary432
9.5.1 Square-base tank432
9.5.2 Nearly square-base tanks433
9.5.3 Circular base433
9.5.4 Spherical tank433
9.6 Exercises434
9.6.1 Multimodal methods for square- and circular-base tanks434
9.6.2 Spherical pendulum,planar,and rotary motions434
9.6.3 Angular Stokes drift for swirling435
9.6.4 Three-dimensional shallow-liquid equations in a body-fixed accelerated coordinate system436
9.6.5 Wave loads on a spherical tank with a tower437
10 COMPUTATIONAL FLUID DYNAMICS439
10.1 Introduction439
10.2 Boundary element methods444
10.2.1 Free-surface conditions445
10.2.2 Generation of vorticity447
10.2.3 Example:numerical discretization447
10.2.4 Linear frequency-domain solutions449
10.3 Finite difference method450
10.3.1 Preliminaries451
10.3.2 Governing equations451
10.3.3 Interface capturing452
10.3.3.1 Level-set technique453
10.3.4 Introduction to numerical solution procedures454
10.3.5 Time-stepping procedures455
10.3.6 Spatial discretizations456
10.3.7 Discretization of the convective and viscous terms456
10.3.8 Discretization of the Poisson equation for pressure457
10.3.9 Treatment of immersed boundaries458
10.3.10 Constrained interpolation profile method459
10.4 Finite volume method460
10.4.1 Introduction460
10.4.2 FVM applied to linear sloshing with potentialflow462
10.4.2.1 Example464
10.5 Finite element method465
10.5.1 Introduction465
10.5.2 A model problem465
10.5.2.1 Numerical example466
10.5.3 One-dimensional acoustic resonance466
10.5.4 FEM applied to linear sloshing with potential flow468
10.5.4.1 Matrix system470
10.5.4.2 Example472
10.6 Smoothed particle hydrodynamics method472
10.7 Summary477
10.8 Exercises478
10.8.1 One-dimensional acoustic resonance478
10.8.2 BEM applied to steady flow past a cylinder in infinite fluid479
10.8.3 BEM applied to linear sloshing with potential flow and viscous damping480
10.8.4 Application of FEM to the Navier-Stokes equations480
10.8.5 SPH method480
11 SLAMMING481
11.1 Introduction481
11.2 Scaling laws for model testing484
11.3 Incompressible liquid impact on rigid tank roof without gas cavities488
11.3.1 Wagner model489
11.3.1.1 Prediction of wetted surface491
11.3.1.2 Spray root solution492
11.3.2 Damping of sloshing due to tank roof impact494
11.3.3 Three-dimensional liquid impact496
11.4 Impact of steep waves against a vertical wall497
11.4.1 Wagner-type model500
11.4.2 Pressure-impulse theory502
11.5 Tank roof impact at high filling ratios503
11.6 Slamming with gas pocket506
11.6.1 Natural frequency for a gas cavity509
11.6.1.1 Simplified analysis511
11.6.2 Damping of gas cavity oscillations511
11.6.3 Forced oscillations of a gas cavity513
11.6.3.1 Prediction of the wetted surface515
11.6.3.2 Case study515
11.6.4 Nonlinear gas cavity analysis516
11.6.5 Scaling516
11.7 Cavitation and boiling522
11.8 Acoustic liquid effects522
11.8.1 Two-dimensional liquid entry of body with horizontal bottom524
11.8.2 Liquid entry of parabolic contour526
11.8.3 Hydraulic jump impact526
11.8.4 Thin-layer approximation of liquid-gas mixture527
11.9 Hydroelastic slamming528
11.9.1 Experimental study532
11.9.2 Theoretical hydroelastic beam model533
11.9.3 Comparisons between theory and experiments537
11.9.4 Parameter study for full-scale tank538
11.9.5 Model test scaling of hydroelasticity544
11.9.6 Slamming in membrane tanks545
11.10 Summary548
11.11 Exercises550
11.11.1 Impact force on a wedge550
11.11.2 Prediction of the wetted surface by Wagner’s method550
11.11.3 Integrated slamming loads on part of the tank roof551
11.11.4 Impact of a liquid wedge551
11.11.5 Acoustic impact of a hydraulic jump against a vertical wall551
APPENDIX:Integral Theorems553
Bibliography555
Index571
热门推荐
- 1263399.html
- 880083.html
- 3324625.html
- 1456223.html
- 901970.html
- 2896876.html
- 3339118.html
- 2054942.html
- 439135.html
- 3104158.html
- http://www.ickdjs.cc/book_3093073.html
- http://www.ickdjs.cc/book_2631426.html
- http://www.ickdjs.cc/book_2299177.html
- http://www.ickdjs.cc/book_2348666.html
- http://www.ickdjs.cc/book_419130.html
- http://www.ickdjs.cc/book_2039975.html
- http://www.ickdjs.cc/book_3404121.html
- http://www.ickdjs.cc/book_455022.html
- http://www.ickdjs.cc/book_950842.html
- http://www.ickdjs.cc/book_2864334.html