图书介绍

Introduction to the Thermodynamics of Materials【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

Introduction to the Thermodynamics of Materials
  • David R. Gaskell 著
  • 出版社: CRC Press
  • ISBN:1498757003
  • 出版时间:2017
  • 标注页数:695页
  • 文件大小:56MB
  • 文件页数:719页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Introduction to the Thermodynamics of MaterialsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ Thermodynamic Principles1

Chapter 1 Introduction and Definition of Terms3

1.1Introduction3

1.2The Concept of State4

1.3Example of Equilibrium8

1.4The Equation of State of an Ideal Gas9

1.5The Units of Energy and Work12

1.6Extensive and Intensive Thermodynamic Variables13

1.7Equilibrium Phase Diagrams and Thermodynamic Components13

1.8Laws of Thermodynamics16

1.8.1 The First Law of Thermodynamics17

1.8.2 The Second Law of Thermodynamics17

1.8.3 The Third Law of Thermodynamics17

1.9Summary17

1.10Concepts and Terms Introduced in Chapter 118

1.11Qualitative Example Problems19

1.12Quantitative Example Problems20

Problems21

Chapter 2 The First Law of Thermodynamics23

2.1Introduction23

2.2The Relationship between Heat and Work24

2.3Internal Energy and the First Law of Thermodynamics25

2.4Constant-Volume Processes29

2.5Constant-Pressure Processes and the Enthalpy,H30

2.6Heat Capacity31

2.7Reversible Adiabatic Processes37

2.8Reversible Isothermal Pressure or Volume Changes of an Ideal Gas40

2.9Other Forms of Work41

2.9.1 Magnetic Work on a Paramagnetic Material41

2.9.2 Electrical Work on a Dielectric Material42

2.9.3 Work to Create or Extend a Surface42

2.10Summary43

2.11Concepts and Terms Introduced in Chapter 245

2.12 Qualitative Example Problems45

2.13 Quantitative Example Problems47

Problems51

Appendix 2A:Note on the Sign Convention of δw54

Chapter 3 The Second Law of Thermodynamics57

3.1 Introduction57

3.2 Spontaneous or Natural Processes58

3.3 Entropy and the Quantification of Irreversibility59

3.4 Reversible Processes61

3.5 Illustration of Reversible and Irreversible Processes61

3.5.1 The Reversible Isothermal Expansion of an Ideal Gas62

3.5.2 The Free Expansion of an Ideal Gas63

3.6 Further Differences between Reversible and Irreversible Expansion64

3.7 Compression of an Ideal Gas65

3.7.1 Reversible Isothermal Compression65

3.8 The Adiabatic Expansion of an Ideal Gas66

3.9 Summary Statements67

3.10 The Properties of Heat Engines67

3.11 The Thermodynamic Temperature Scale71

3.12 The Second Law of Thermodynamics74

3.13 Maximum Work76

3.14 Entropy and the Criterion for Equilibrium78

3.15 The Combined Statement of the First and Second Laws of Thermodynamics79

3.16 Summary81

3.17 Concepts and Terms Introduced in Chapter 383

3.18 Qualitative Example Problems83

3.19 Quantitative Example Problems85

Problems90

Chapter 4 The Statistical Interpretation of Entropy93

4.1 Introduction93

4.2 Entropy and Disorder on an Atomic Scale94

4.3 The Concept of Microstate95

4.4 The Microcanonical Approach96

4.4.1 Identical Particles on Distinguishable Sites with Different Assigned Energies96

4.4.2 Configurational Entropy of Differing Atoms in a Crystal98

4.4.3 Configurational Entropy of Magnetic Spins on an Array of Atoms102

4.5 The Boltzmann Distribution104

4.6 The Influence of Temperature108

4.7 Thermal Equilibrium and the Boltzmann Equation110

4.8 Heat Flow and the Production of Entropy111

4.9 Summary113

4.10 Concepts and Terms Introduced in Chapter 4114

4.11 Qualitative Example Problems115

4.12 Quantitative Example Problems116

Problems119

Chapter 5 Fundamental Equations and Their Relationships121

5.1 Introduction121

5.2 The Enthalpy,H123

5.3 The Helmholtz Free Energy,A123

5.4 The Gibbs Free Energy,G128

5.5 The Fundamental Equations for a Closed System129

5.6 The Variation of the Composition within a Closed System131

5.7 The Chemical Potential131

5.8 Thermodynamic Relations134

5.9 Maxwell’s Relations135

5.10 Examples of the Application of Maxwell Relations137

5.10.1 The First TdS Equation137

5.10.2 The Second TdS Equation139

5.10.3 S and V as Dependent Variables and T and P as Independent Variables141

5.10.4 An Energy Equation (Internal Energy)142

5.10.5 Another Energy Equation (Enthalpy)143

5.10.6 A Magnetic Maxwell Relation143

5.10.7 S,V,and M with Independent Variables T,P,and ?144

5.11 Another Important Formula145

5.12 The Gibbs-Helmholtz Equation145

5.13 Summary147

5.14 Concepts and Terms Introduced in Chapter 5148

5.15 Qualitative Example Problems148

5.16 Quantitative Example Problems150

Problems152

Chapter 6 Heat Capacity,Enthalpy,Entropy,and the Third Law of Thermodynamics155

6.1 Introduction155

6.2 Theoretical Calculation of the Heat Capacity156

6.3 The Empirical Representation of Heat Capacities162

6.4 Enthalpy as a Function of Temperature and Composition162

6.5 The Dependence of Entropy on Temperature and the Third Law of Thermodynamics172

6.5.1 Development of the Third Law of Thermodynamics172

6.5.2 Apparent Contradictions to the Third Law of Thermodynamics175

6.6 Experimental Verification of the Third Law177

6.7 The Influence of Pressure on Enthalpy and Entropy182

6.8 Summary184

6.9 Concepts and Terms Introduced in Chapter 6185

6.10 Qualitative Example Problems186

6.11 Quantitative Example Problems187

Problems193

Appendix 6A194

Part Ⅱ Phase Equilibria199

Chapter 7 Phase Equilibrium in a One-Component System199

7.1 Introduction199

7.2 The Variation of Gibbs Free Energy with Temperature at Constant Pressure200

7.3 The Variation of Gibbs Free Energy with Pressure at Constant Temperature204

7.4 The Gibbs Free Energy as a Function of Temperature and Pressure205

7.5 Equilibrium between the Vapor Phase and a Condensed Phase210

7.6 Graphical Representation of Vapor Phase and Condensed Phase Equilibria212

7.7 Solid-Solid Equilibria212

7.8 The Effect of an Applied Magnetic Field on the P-T Diagram217

7.9 Summary218

7.10 Concepts and Terms Introduced in Chapter 7219

7.11 Qualitative Example Problems220

7.12 Quantitative Example Problems222

Problems226

Chapter 8 The Behavior of Gases229

8.1 Introduction229

8.2 The P-V-T Relationships of Gases229

8.3 The Thermodynamic Properties of Ideal Gases and Mixtures of Ideal Gases230

8.3.1 Mixtures of Ideal Gases230

8.3.1.1 Mole Fraction231

8.3.1.2 Dalton’s Law of Partial Pressures231

8.3.1.3 Partial Molar Quantities232

8.3.2 The Enthalpy of Mixing of Ideal Gases234

8.3.3 The Gibbs Free Energy of Mixing of Ideal Gases235

8.3.4 The Entropy of Mixing of Ideal Gases236

8.4 Deviation From Ideality and Equations of State for Real Gases236

8.5 The Van Der Waals Fluid240

8.6 Other Equations of State for Nonideal Gases250

8.7 Further Thermodynamic Treatment of Nonideal Gases251

8.8 Summary259

8.9 Concepts and Terms Introduced in Chapter 8260

8.10 Qualitative Example Problems260

8.11 Quantitative Example Problems261

Problems265

Chapter 9 The Behavior of Solutions267

9.1 Introduction267

9.2 Raoult’s Law and Henry’s Law267

9.3 The Thermodynamic Activity of a Component in Solution271

9.4 The Gibbs-Duhem Equation273

9.5 The Gibbs Free Energy of Formation of a Solution275

9.5.1 The Molar Gibbs Free Energy of a Solution and the Partial Molar Gibbs Free Energies of the Components of the Solution275

9.5.2 The Change in Gibbs Free Energy due to the Formation of a Solution277

9.5.3 The Method of Tangential Intercepts278

9.6 The Properties of Ideal Solutions279

9.6.1 The Change in Volume Accompanying the Formation of an Ideal Solution279

9.6.2 The Enthalpy of Formation of an Ideal Solution281

9.6.3 The Entropy of Formation of an Ideal Solution282

9.7 Nonideal Solutions285

9.8 Application of the Gibbs-Duhem Relation to the Determination of Activity288

9.8.1 The Relationship between Henry’s and Raoult’s Laws289

9.8.3 Direct Calculation of the Total Molar Gibbs Free Energy of Mixing290

9.9 Regular Solutions292

9.10 A Statistical Model of Solutions298

9.10.1 Extensions of the Regular Solution Model:The Atomic Order Parameter303

9.10.2 Including Second-Neighbor Interactions306

9.11 Subregular Solutions307

9.12 Modified Regular Solution Model for Application to Polymers309

9.12.1 The Flory-Huggins Model309

9.13 Summary310

9.14 Concepts and Terms Introduced in Chapter 9313

9.15 Qualitative Example Problems313

9.16 Quantitative Example Problems315

Problems317

Chapter 10 Gibbs Free Energy Composition and Phase Diagrams of Binary Systems321

10.1 Introduction321

10.2 Gibbs Free Energy and Thermodynamic Activity322

10.3 Qualitative Overview of Common Binary Equilibrium Phase Diagrams324

10.3.1 The Lens Diagram:Regular Solution Model324

10.3.2 Unequal Enthalpies of Mixing325

10.3.3 The Low-Temperature Regions in Phase Diagrams326

10.3.4 The Eutectic and Eutectoid Phase Diagrams327

10.3.5 The Peritectic and Peritectoid Phase Diagrams329

10.4 Liquid and Solid Standard States331

10.5 The Gibbs Free Energy of Formation of Regular Solutions338

10.6 Criteria for Phase Stability in Regular Solutions341

10.7 Phase Diagrams,Gibbs Free Energy,and Thermodynamic Activity346

10.8 The Phase Diagrams of Binary Systems That Exhibit Regular Solution Behavior in the Liquid and Solid States356

10.9 Summary362

10.10 Concepts and Terms Introduced in Chapter 10364

10.11 Qualitative Example Problems364

10.12 Quantitative Example Problems366

Problems371

Appendix 10A373

Appendix 10B376

Part Ⅲ Reactions and Transformations of Phases381

Chapter 11 Reactions Involving Gases381

11.1 Introduction381

11.2 Reaction Equilibrium in a Gas Mixture and the Equilibrium Constant382

11.3 The Effect of Temperature on the Equilibrium Constant388

11.4 The Effect of Pressure on the Equilibrium Constant390

11.5 Reaction Equilibrium as a Compromise between Enthalpy and Entropy391

11.6 Reaction Equilibrium in the System SO2(g)-SO3(g)-O2(g)394

11.6.1 The Effect of Temperature395

11.6.2 The Effect of Pressure396

11.6.3 The Effect of Changes in Temperature and Pressure397

11.7 Equilibrium in H2O-H2 and CO2 -CO Mixtures399

11.8 Summary401

11.9 Concepts and Terms Introduced in Chapter 11402

11.10 Qualitative Example Problems403

11.11 Quantitative Example Problems404

Problems410

Chapter 12 Reactions Involving Pure Condensed Phases and a Gaseous Phase413

12.1 Introduction413

12.2 Reaction Equilibrium in a System Containing Pure Condensed Phases and a Gas Phase414

12.3 The Variation of the Standard Gibbs Free Energy Change with Temperature419

12.4 Ellingham Diagrams422

12.5 The Effect of Phase Transformations430

12.5.1 Example of the Oxidation of Copper431

12.5.2 Example of the Chlorination of Iron433

12.6 The Oxides of Carbon435

12.6.1 The Equilibrium 2CO + O2 = 2CO2440

12.7 Graphical Representation of Equilibria in the System Metal-Carbon-Oxygen443

12.8 Summary447

12.9 Concepts and Terms Introduced in Chapter 12448

12.10 Qualitative Example Problems448

12.11 Quantitative Example Problems450

Problems456

Appendix 12A458

Appendix 12B459

Chapter 13 Reaction Equilibria in Systems Containing Components in Condensed Solution467

13.1 Introduction467

13.2 The Criteria for Reaction Equilibrium in Systems Containing Components in Condensed Solution469

13.3 Alternative Standard States477

13.4 The Gibbs Equilibrium Phase Rule484

13.5 Phase Stability Diagrams489

13.6 Binary Systems Containing Compounds503

13.7 Graphical Representation of Phase Equilibria516

13.7.1 Phase Equilibria in the System Mg-Al-O516

13.7.2 Phase Equilibria in the System Al-C-O-N Saturated with Carbon520

13.8 The Formation of Oxide Phases of Variable Composition523

13.9 The Solubility of Gases in Metals532

13.10 Solutions Containing Several Dilute Solutes537

13.11 Summary547

13.12 Concepts and Terms Introduced in Chapter 13550

13.13 Qualitative Example Problems550

13.14 Quantitative Example Problems551

Problems561

Chapter 14 Electrochemistry567

14.1 Introduction567

14.2 The Relationship between Chemical and Electrical Driving Forces569

14.3 The Effect of Concentration on EMF574

14.4 Formation Cells576

14.5 Concentration Cells577

14.6 The Temperature Coefficient of the EMF584

14.7 Thermal Energy (Heat) Effects586

14.8 The Thermodynamics of Aqueous Solutions587

14.9 The Gibbs Free Energy of Formation of Ions and Standard Reduction Potentials591

14.9.1 Solubility Products596

14.9.2 The Influence of Acidity599

14.10 Pourbaix Diagrams601

14.10.1 The Pourbaix Diagram for Aluminum603

14.10.2 The Equilibrium between the Two Dissolved Substances604

14.10.3 The Equilibrium between the Two Solids605

14.10.4 One Solid in Equilibrium with a Dissolved Substance607

14.10.5 The Solubility of Alumina in Aqueous Solutions609

14.11 Summary611

14.12 Concepts and Terms introduced in Chapter 14613

14.13 Qualitative Example Problem613

14.14 Quantitative Example Problems614

Problems618

Chapter 15 Thermodynamics of Phase Transformations621

15.1 Thermodynamics and Driving Force622

15.1.1 Phase Transformations with No Change in Composition622

15.1.2 Phase Transformations with Change in Composition624

15.2 Use of the T 0 Curves626

15.2.1 Martensitic Transformation628

15.2.2 Massive Transformations628

15.2.3 The Formation of Amorphous Phases from the Liquid629

15.3 Surface Energy630

15.3.1 Equilibrium Shape630

15.4 Nucleation and Surface Energy632

15.4.1 Homogeneous Nucleation632

15.4.2 Heterogeneous Nucleation632

15.5 Capillarity and Local Equilibrium634

15.6 Thermodynamics of the Landau Theory of Phase Transformations636

15.7 Summary643

15.8 Concepts and Terms Introduced in Chapter 15643

15.9 Qualitative Example Problems644

Problems645

Appendix A:Selected Thermodynamic and Thermochemical Data649

Appendix B:Exact Differential Equations657

Appendix C:The Generation of Additional Thermodynamic Potentials as Legendre Transformations659

Nomenclature669

Answers to Selected Problems671

Index687

热门推荐